Dr David McGrath

Dr David McGrath

Dr David McGrath

Spine Physician

MB BS (Hons) FAFOM, RACP, FAFMM
Master of Pain Medicine


 

Vertex Semigroup
  N1 (xyx) N2 (xyz) N3 (zyx) N4 (zyz)
N1 (xyx) 1____ 2___ 1____ 2____
N2 (xyz) 1____ 2___ 1____ 2____
N3 (zyx) 3____ 4____ 3____ 4____
N4 (zyz) 3____ 4____ 3____ 4____

 

Canonical Representation
    N1 N4 N2 N3
Recursion   1z3=1  4x2=4  2z4=2  3x1=3 
Recursion/Participation   1x1=1  4z4=4  2x2=2  3z3=3 
Creation/Participation   2x1=1 3z4=4 1x2=2 4z3=3
Creation   2z3=1  3x2=4  1z4=2  4x1=3 

 

Pattern A (C-D 1/2 and 3/4)
  Creation Destruction   Recursion Participation Total
N1 2x1=1 1x2=2   1z3=1 3x1=3 4
N1* 2z3=1 1z4=2   1x1=1 4x1=3 4
N2 1x2=2 2x1=1   2z4=2 4x2=4 4
N2* 1z4=2 2z3=1   2x2=2 3x2=4 4
             
N4 3z4=4 4z3=3   4x2=4 2z4=2 4
N4* 3x2=4 4x1=3   4z4=4 1z4=2 4
N3 4z3=3 3z4=4   3x1=3 1z3=1 4
N3* 4x1=3 3x2=4   3z3=3 2z3=1 4
Total 8 8   8 8 32

 (1,[2,3]), (4,[2,3])      (3,[1,4]),(2,[1,4])  =Transform Triples

 

Pattern B (R-P 1/3 and 2/4)
  Recursion Participation   Creation Destruction Total
N1 1z3=1 3x1=3   2x1=1 1x2=2 4
N3 3x1=3 1z3=1   4z3=3 3z4=4 4
            4
N2 2z4=2 4x2=4   1x2=2 2x1=1 4
N4 4x2=4 2z4=2   3z4=4 4z3=3 4
             
N1* 1x1=1 4x1=3   2z3=1 1z4=2 4
N4* 4z4=4 1z4=2   3x2=4 4x1=3 4
             
N2* 2x2=2 3x2=4   1z4=2 2z3=1 4
N3* 3z3=3 2z3=1   4x1=3 3x2=4 4
Total 8 8   8 8 32
       

N1 Neighbourhood Object=O1

  Creation 2x1=1   Creation 2z3=1  
Participation 3x1=3       Recursion 1z3=1
    N1Neighbourhood    
Participation 4x1=3       Recursion 1x1=1
  Destruction 1x2=2   Destruction 1z4=2  

 

 

N4 Neighbourhood Object=O4 
  Creation 3z4=4
  Creation 3x2=4
 
Participation 2z4=2       Recursion 4x2=4
    N4Neighbourhood    
Participation 1z4=2
      Recursion 4z4=4
  Destruction  4z3=3
  Destruction  4x1=3
 

 

N3 Neighbourhood Object=O3

  Creation 4z3=3   Creation 4x1=3  
Participation 1z3=1       Recursion 3x1=3
    N3Neighbourhood    
Participation 2z3=1       Recursion 3z3=3
  Destruction 3z4=4   Destruction 3x2=4  

 

N2 Neighbourhood Object=O2
  Creation 1x2=2
  Creation 1z4=2
 
Participation 4x2=4
      Recursion 2z4=2
    N2Neighbourhood    
Participation 3x2=4
      Recursion 2x2=2
  Destruction 2x1=1
  Destruction 2z3=1
 

 There are four (4) even permutations on the Object set. Permutations are created by exchanging triples T(1234) and (xz) bonding.

Identity=P0 (1234,xz)=(1)(2)(3)(4) and (x)(z)

Vertical Reflection=P1(1234,xz)=(2143)=(12)(34) and  (x)(z) 

Rotation=P2(1234,xz)=(4321)=(14)(23) and (xz)  

Horizontal Reflection=P3(1234,xz)=(3412)=(13)(24) and (xz) 

The permutations form a group under composition and

PxPx=Po, PxPy=PyPx, PxPo=Px (inverse,abelian,identity)

Reflection+Reflection=Rotation

Reflection1+Rotation=Reflection2

Reflection2+Rotation=Reflection1

The permutation matrix is as follows.

Permutation Matrix
 f1f2 (1234) (12)(34) (14)(23) (13)(24)
(1234) (1234) (12)(34) (14)(23)) (13)(24)
(12)(34) (12)(34) (1234) (13)(24) (14)(23)
(14)(23) (14)(23) (13)(24) (1234) (12)(34)
(13)(24) (13)(24) (14)(23) (12)(34) (1234)

The group can be recognised as the Klein4 group which is the automorphism group of

Klein Four-Group (Cayley Table)

  Po P1 P2 P3
P0 Po P1 P2 P3
P1 P1 Po P3 P2
P2 P2 P3 Po P1
P3 P3 P2 P1 Po

 

The permutation group on the neighbourhood objects:

1.Equivalent to a Klein 4-Group. The smallest non-cyclic group. Order 4.

2.Isomorphic to Dih2. (Dihedral group of order 2) (groups of polygon symmetry)

3.Subgroup of A4 {(1234),(2143),(4321),(3412): (123),(213),(124),(421),(234),(243),(134),(143) }=4!/2 Also subgroup of S4.

4.Normal Subgroup because operation is invariant under conjugation.  gag¯¹(inverse)=a eg(2143)(3)(2143)=(3)

5. Symmetry group of Rectangle. With elements identity (1234),vertical reflection (13)(24),horizontal reflection (12)(34),180 rotation (14)(23).

6.All neighbourhood objects are equivalent under K4group action, in the sense that there is a K4 element , such that for or all x,y gx=y. Thus K4 is transitive and all neighbourhoods belong to the one ORBIT.

7.K4=Z2xZ2 with 3 Z2 (cyclic) subgroups (Po,P1)(Po,P2)(Po,P3)

 

 

                                       

 



©Copyright 2007 Dr David McGrath. All rights reserved